Nanometer-scale superconducting domains observed on NdBa₂Cu₃O_{7-δ}

Pintu Das¹, Dirk Mautes¹, Michael R. Koblischka¹, Thomas Wolf² and Uwe Hartmann¹

- ¹ Institute of Experimental Physics, University of Saarbruecken, D-66041 Saarbruecken, Germany
- ² Forschungszentrum Karlsruhe GmbH, Institute of Solid State Physics, D-76021 Karlsruhe, Germany

In understanding high temperature superconductivity, the recent focus is at the local-scale electronic modulation and its influence towards superconductivity in general. The results from $Bi_2Sr_2CaCu_2O_{8+\delta}$ samples are exciting and lead to a good deal of knowledge [1,2]. The granular structure and atomic-scale modulation of the density of states have been observed.

Here we report Scanning Tunneling Spectroscopic (STS) results obtained on the (*ab*) plane of a slightly underdoped NdBa₂Cu₃O_{7- δ} (T_c= 93.5 K) twinned single crystals at 4.2 K. Recent results proved that the NdBCO surface is highly clean and stable in air, showing atomic resolution at room temperature [3]. We used the STS imaging technique to study the electronic inhomogeneity and we observe that there are superconducting domains of ~ 3 nm length scale separated by nonsuperconducting regions, similar to that observed in Bi₂Sr₂CaCu₂O_{8+ δ}. In the superconducting domains, the size of the energy gap spatially varies from ~16 meV to ~44 meV. The average gap size is found to be ~22 meV. We discuss these data and the possible origin of the inhomogeneous electronic structure of the respective materials.

- [1] Lang *et al.*, Nature **415**, 412 (2002)
- [2] McElroy *et al.*, Nature **422**, 592 (2003)
- [3] Ting et al., Appl. Phys. Lett. 72, 2035 (1998)