Electronic inhomogeneity and zero-bias conductance peaks on optimally doped $NdBa_2Cu_3O_{7-\delta}$: *a*-axis tunneling spectroscopic studies

Pintu Das¹, Michael R. Koblischka¹, Thomas Wolf², Iduru Shigeta³, Uwe Hartmann¹

- ^{1.} Institute of Experimental Physics, University of Saarbruecken, D-66041 Saarbruecken, Germany.
- ^{2.} Forschungzentrum Karlsruhe GmbH, Institute of Solid State Physics, D-76021, Karlsruhe, Germany
- ^{3.} Department of General Education, Kumamoto National College of Technology, Kumamoto 861-1102, Japan

We report the results of scanning tunneling spectroscopic experiments performed on optimally doped NdBa₂Cu₃O_{7- δ} single crystals (T_c=95.5 K) at T = 4.2 K. The data show that the (*bc*)-plane is electronically inhomogeneous. Typical d-wave superconducting gaps having V-shaped intra-gap structures have been observed on the surface. We report on the observation of zero-bias conductance peaks at certain tunneling locations. We analyzed the data using the generalized formulation of the BTK tunneling theory for normal metal-insulator-*d*-wave superconductors [1] and show that the peak at the zero bias conductance is produced due to the atomic-scale roughness existing on the surface.

[1] Tanaka *et al.*, PRL **74**, 3451 (1995)