Nanoscale stripe structures in SmBa₂Cu₃O_x superconductors

M. Winter¹, M. R. Koblischka¹, Th. Wolf², X. Yao³, A. Hu⁴, and U. Hartmann¹

¹Institute of Experimental Physics, University of Saarbrücken, P.O.Box 151150, 66041 Saarbrücken, Germany

²Forschungzentrum Karlsruhe GmbH, Institute of Solid State Physics, D-76021, Karlsruhe, Germany

³Department of Physics, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, P. R. China

⁴Department of Physics, University of Waterloo, 200 Univ. Ave. West, Waterloo, ON N2L 3P7, Canada

AFM and STM scans on SmBa₂Cu₃O_x (SmBCO) melt-processed samples prepared using different techniques revealed the presence of nanoscale stripe-like structures, sometimes parallel over several micrometers, sometimes wavy. These structures consist of chemical compositional fluctuations and act as effective δT_c -pinning centers due to their wavelength of typically 10-60 nm which is comparable to the ideal pinning-center size of 2 ξ (~10 nm for YBa₂Cu₃O_x in the ab-plane). Compared to similar structures in ternary (Sm,Eu,Gd)Ba₂Cu₃O_x (SEG) and (Nd,Eu,Gd)Ba₂Cu₃O_x (NEG)) systems, where the stripes appear either as plateau-like stripes or as chains of aligned clusters, the stripes in SmBCO always appear as plateau-like stripes with a height of 1Å – 8Å. These pinning structures throughout the whole sample volume may be a key to improve critical current densities especially at high external magnetic fields.