Contribution submission to the conference Berlin 2008

STM based inelastic electron tunneling spectroscopy on NdBa₂Cu₃O_{7- δ} — •PINTU DAS^{1,2}, MICHAEL R. KOBLISCHKA¹, HELGE ROSNER², THOMAS WOLF³, and UWE HARTMANN¹ — ¹Institute of Experimental Physics, University of Saarland, 66041, Saarbruecken, Germany — ²Max Planck Institute of Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany — ³Forschungzentrum Karlsruhe GmbH, Institute of Solid State Physics, 76021 Karlsruhe, Germany

Inelastic electron tunneling spectroscopy (IETS) is a very powerful tool to detect collective excitations in conducting materials. Due to inelastic excitation by tunneling electrons, a very weak kink is usually observed in dI/dV curves at the bias voltage corresponding to the excitation energy. In IETS on s wave superconductors, phonon modes (ω_{ph}) were observed at energies given by $E = \Delta + \hbar \omega_{nh}$, where Δ is the energy gap. Recently IETS using scanning tunneling spectroscopy (STS) has been used to detect a bosonic mode in $Bi_2Sr_2CaCu_2O_{8+\delta}$ [1]. In the STS data obtained on NdBa₂Cu₃O_{7- δ} single crystals, we observed peaks in $d^2 I/dV^2$ curves beyond the coherence peaks from which collective excitation energies of \sim 23 meV and \sim 34 meV have been found for the samples with T_c of 93.5 K and 95.5 K respectively. Band structure calculation shows that there is no structure in the density of state at the observed energies which thus supports the presumption that the observed kinks in dI/dV curves are due to inelastic scattering of electrons.

[1] Lee et al., Nature **442**, 546 (2006).

Part:	TT
Туре:	Poster
Topic:	Supraleitung: Eigenschaften, elektronische
	Struktur, Ordnungsparameter;
	Superconductivity: Properties, Electronic
	Structure, Order Parameter
Email:	Pintu.Das@cpfs.mpg.de