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Abstract  —  A perturbation approach is presented to 
estimate the influence of geometry variation on the 
performance of microwave devices. A first-order expression is 
given for the change of the scattering matrix due to a slight 
shift of a metallic surface by using the reciprocity condition 
between port sources and the perturbated volume element. 
Based on this result, the consequences of slight geometry 
changes can be estimated in an intuitive manner from mode 
field images. This is demonstrated in the practical example of a 
vertical microstrip-to-stripline transition at microwave 
frequencies for implementation in an industrial LTCC-process, 
where robust design is of utmost importance. 

Index Terms  —  Hybrid integrated circuit packaging, tolerance 
analysis, design centering, Design methodology, Coupled mode 
analysis 
 

I. INTRODUCTION 
In many processes related to microelectronic production, 
tolerance requirements are directly related to cost. This 
means, that decreasing tolerance windows by two often 
increases production cost by a factor of two or sometimes 
even more. Hence there will in many cases be the design 
requirement of hardening a particular electromagnetic 
structure towards production tolerance. However, only few 
electromagnetic design tools support reasonable sensitivity 
analysis on a basis of simulated fields.  
In this paper the optimization of a via transition is proposed 
by means of an intuitive method for calculating the shape 
sensitivities based on electromagnetic field data, which 
occurs as a by-product of many contemporary design-tools. 
The intuitive method is based on the perturbation theory for 
the scattering matrix presented below. A more rigorous 
proof will be published elsewhere.  

II. MATHEMATICAL FORMULATION OF THE 
METHOD 

As our unpertubed system we consider an N-terminal 
microwave junction. The junction is defined by metallic 
surfaces MmhgrQ

mQ ...1),,(: =  We now consider a 
perturbation consisting in a slight shift of a part of m’, i. e. 
one of the metallic surfaces, 
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With the corresponding surface normal vector ,'),( Qrrn ∈  
the perturbation p is defined by the perturbation volume; 
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Typical geometries created by shifted surfaces are displayed 
in Fig. 1, defining in each case a perturbation volume Vp. 
 
 

 
 
Fig. 1: Basic types of surfaces shifted by ε, the perturbation 
volume Vp indicated dark; (a) - (d) are cases described by (2a), (e) 
and (f) are cases described by (2b). The light area in (e) indicates a 
shift with f<0. 
 
For a small shift ξ , the impact on the scattering matrix can 
be expressed in the following manner: 

 2( ) (0) (0) ( )mn mn mn mn mnS S W S w Oε ξ ξ= + = + +  (2) 

Both ports of the structure shall be modelled as 
homogeneous waveguides of infinite length. Sources in the 
form of electric and magnetic currents fitting the respective 
waveguide mode ( , )n n nJ u v  and ( , )n n nK u v  are located in 
reference planes parameterized by ,n nu v  within the 
waveguide n  and excite its dominant mode propagating 
into the structure. This mode is assumed to have unit power 
and zero phase. This mode excited at port n  creates an 
outgoing wave at port m and a reaction between ports n and 
m  can be calculated. 
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A geometry perturbation like in Fig. 1 can be modelled as 
an additional current density in the system, which has to 
obey particular conditions. Most important, its 
electromagnetic field has to compensate the original fields 
within the disturbed volume pV . 
Hence it is clear that at the bottom of pV , which is the 
border between pV  and the unperturbed metal surface, ,P nj  
obeys the condition 

 ( ) ( ), Q'r                      r r (g,h).P n nj r j= − ∈  (4) 

at the opposite side of the perturbing volume, the new 
current will be approximately the same as the original 
current on the unperturbed boundary.  

 ( ) ( ) ( ), ' Q'r +       r r (g,h).P n Q nj r n jξ ξ+ = Ο ∈  (5) 

On the boundary surface of the perturbed volume, which is 
perpendicular to the unperturbed surface, the current will 
mainly flow perpendicularly to the original surface. 
Furthermore it is assumed that the current is continuous and 
compensates the original H-Field within the volume of pV  
approximately. These conditions can be fulfilled assuming 
the following expression for the perturbation current at any 
point on the surface of pV  with the unit normal vector n : 

 ,P n nj n H= × . (6) 

To find the impact of the disturbed current density on a 
particular port m  and the respective S-parameter mnS , we 
realize that reaction is a linear quantity and therefore 
equation holds: 

 , ,, , ,P n P nn j m n m j m+ = + . (7) 

For this reason it is sufficient to calculate the reaction 
between the Source n  with the current density ,P nj  caused 
by the geometry perturbation on its surface by the source 
m . 
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By application of Gauss’ theorem we rewrite the surface 
integration as a volume integration: 
 

 
( )

P P

P

n m n m
V V

m n n m
V

E H dA div E H dV

H rotE E rotH dV
∂

× ⋅ = × =

= ⋅ − ⋅

∫∫ ∫∫∫

∫∫∫
   (9) 

Plugging in Maxwell’s equations to get rid of the curl 
operators on the electric and magnetic fields yields the 
simple expression: 

 , ,
P

P n m n m n
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For the S-parameter set nmS (ξ), for small perturbations pV , 
which are parameterized with ξ ,eqn (2) becomes, 
considering eqns (3) ,(7), (8) and (10),  
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This as a start holds for perturbations, where a metal surface 
is translated in such a way that a volume element which 
previously contained electromagnetic fields afterwards is 
filled by metal. Cases like in Fig. 1e, where a previously 
metal filled volume afterwards is filled by the nearby 
dielectric would require suitable continuous extrapolation of 
the electromagnetic fields first. However, it seems also 
appropriate to firstly calculate a positive translation of the 
same size and to count this value negatively in eqn. (11) 
afterwards.  
 
The above considerations imply that the sensitivity of Snm 
with respect to geometry change is directly related to the  
coupling density   
 

mnnmnm EEHH εµχ +=  .  (12) 
 

IV. APPLICATION TO AN LTCC INTEGRATED 
TRANSITION 

In this section the use of the method with respect to the 
design of microwave structures is demonstrated. In mass-
production LTCC-processes one of the most important 
tolerance mechanisms is related to imperfections in the 
stacking of the readily patterned green-sheets, which lead to 
misalignment between the via-positions as well as the 
conductor pattern in adjacent layers. This misalignment is 
most critical in structures extending over several patterned 
layers of the final module. 
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For this reason as a practical example a microstrip-to-
stripline transition for implementation in LTCC will be 
investigated. The microstrip conductor on top of the 
ceramics is guided through a hole in the associated 
groundplane into a stripline environment in a way that the 
microstrip groundplane at the same time forms the upper 
groundpane of the stripline environment. The electrical 
connection between the microstrip- and stripline conductors 
is established using two stacked vias. Further vias are 
necessary for balancing the currents on the top and bottom 
stripline groundplanes and for shielding and suppressing 
parallel plate waves. An idea of the geometry can be gained 
from Figure 2. 
 

 
 

 
 
Fig. 2: Via transition with the upper via shifted forward 
(upper image), and backward (lower image). The coupling 
density between left-and right moving modes is indicated by 
greyscale     
 
A rigid tolerance analysis has been carried out using monte 
carlo techniques but also the methodology described above 
and it turned out that those techniques complement each 
other in a very advantageous manner, since the calculus 
presented in this paper opens an intuitive possibility for 
discovering optimization potential. The coupling density 
(12) is shown for a configuration with vias shifted backward 
and forward. The coupling densities on the left and the right 
of vias are very different for the backward shift, and more 
similar for the forward shift. A further small shift of the 

upper via to the right would produce a positive shift on the 
right side and a negative shift on the left side. For the 
forward shift, eqn. (11) yields a much smaller value, 
because contributions from the left and right areas cancel by 
some degree. Furthermore, a smaller value from (11) for the 
forward shift is expected from the absolute values of the 
coupling density. 
 
 

 
 
Fig. 3:  Simulated values of scattering matrix element for 
reflection of the via transition of Fig. 3 for various values of 
the forward and backward shift. 
 
To verify this prediction, a simulation has been carried out 
using a 2,5D EM simulation tool. Starting from the perfectly 
centered and aligned case, the via positions of upper and 
lower via have been set to relative positions of –50 micron 
up to +50 micron with 10 micron steps. This makes 121 
configurations altogether, the input reflection of which can 
be seen in Fig. 3. The diagram is divided in two groups of 
points for easier legibility. Points marked ‘forward shift’ 
indicate via positions where the top via is positioned on the 
right of the bottom via. This corresponds to a field 
distribution similar as the one in Fig. 2 (upper image). 
Points marked ‘backward shift’ belong to via positions as 
indicated in Fig. 2 (lower image), where the top via was 
shifted to the left of the bottom via. 
It can be seen that in the group named ‘backward shift’ the 
points are much closer together although the parameter step 
is the same for both groups. The totally covered area for the 
regions of forward shift and backward shift are equal for the 
parameter space but behave like 1:3 for the area covered in 
the Smith-diagram. Hence it can be stated, that a slight 
offset in the central via positions of the investigated 
transition result in a significant gain in robustness.  
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V. CONCLUSION 
A first order scattering theory based on computed mode 
patterns is given for application in electromagnetic 
structures with one or multiple ports. It can be used to gain a 
quantitative as well as a qualitative understanding of 
tolerance impact on a given design. The quantitative aspect 
can be helpful when optimizing geometry parameters. But 
often the qualitative understanding of tolerance-impact by 
visualizing its density-function is even more helpful since it 
opens room to find structural improvements instead of just 
tuning parameters. 
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